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Abstract
In this paper, a new family of adaptive filtering algorithms is presented, which aims to
combine the small misalignment resulting from the reuse of past weight vectors with
the fast convergence arising from the proportionate adaptation and logarithmic cost
functions. This family of algorithms is obtained as a solution to a deterministic con-
strained optimization problem, by using the Lagrange multipliers technique, which
differs from the traditionally employed stochastic gradient technique. Two special
cases are proposed, namely the improved mu-law proportionate least mean logarith-
mic square with reuse of coefficients (IMPLMLS-RC) algorithm and the improved
mu-law proportionate least logarithmic absolute difference with reuse of coefficients
(IMPLLAD-RC) algorithm. An energy conservation relationship is established, which
can be employed to perform stochastic transient analyses of the proposed algorithms.
Simulations in system identification and active noise control applications show the
advantages of the IMPLMLS-RC and IMPLLAD-RC algorithms over the traditional
LMS and LAD, and the recently proposed LMLS and LLAD, with respect to both
steady-state performance and robustness against impulsive noise.

Keywords Adaptive filter · Coefficient vector reusing · LMS algorithm · LAD
algorithm

1 Introduction

Adaptive filters have been effectively applied in a wide range of challenging tasks such
as system identification, channel equalization, active noise control (ANC) and echo
cancelation [8]. In system identification, the objective of an adaptive filter, shown
in Fig. 1, is to iteratively update the vector w(k) ∈ R

N to approach the unknown
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Fig. 1 Block diagram of the
system identification problem

Fig. 2 Block diagram of the ANC problem, where b̂ denotes an estimate of the secondary path b

vector w� ∈ R
N , whose elements contain the coefficients of a transfer function to

be emulated. The identification process intends to progressively reduce, in statistical
terms, the quadratic error e2(k), with the error defined as

e(k) � d(k) − y(k), (1)

where y(k) � wT (k)x(k) is the filter output at the kth iteration, d(k) =
xT (k)w�x(k) + ν(k) is the reference signal, x(k) ∈ R

N is the input signal and ν(k)
accounts for both model imprecisions and measurement noise.

ANC systems consist of a powerful tool for several practical problems that involve
the introduction of secondary sources driven so that the field generated by these sources
interferes destructivelywith the field caused by the original source [6,10,13–16]. Com-
monly, they employ adaptive FIR filters trained with the filtered-x LMS algorithm [6]
for both internal model control and feedforward systems [3]. Usually, the secondary
path is estimated online by the injection of auxiliary noise [4]. With respect to the
characteristics of the targeted noise, the active noise control arises in two flavors: the
broadband ANC and the narrowband ANC [29]. Figure 2 presents the structure of a
typical scheme proper for ANC tasks.

We emphasize the least mean squares (LMS) and the normalized least mean squares
(NLMS) [8] among classical adaptive filtering algorithms. The LMF (least mean
fourth) algorithm proposed in [28] shows in some circumstances a better conver-
gence than that of the LMS approach, although it often presents stability problems.
A logarithmic cost function is proposed in [25], from which the least mean logarith-
mic square (LMLS) and least logarithmic absolute difference (LLAD) algorithms are
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derived by means of a stochastic gradient method. The LLAD is more robust than the
LMS in scenarios subject to impulsive noise and outperforms the LAD algorithm [25].

It is noteworthy that the coefficient reuse technique minimizes the weighted sum of
the squares of the Euclidean distances among the actual vector of adaptive coefficients
w(k + 1) and the L past vectors w(k − l), with l ∈ {0, 1, . . . , L − 1}, where L is a
parameter chosen by the designer [11]. Such technique is able to enhance the steady-
state performance in low-SNR scenarios [5,18–23].

Each adaptive coefficient of proportionate adaptation algorithms has its learning
factor adjusted by its relative magnitude. According to the estimated sparsity of the
transfer function to be identified, these algorithms achieve a faster convergence than
traditional algorithms when the channel to be identified is sparse [17]. However, for
scattered channels, their performances may be substantially reduced [7]. A modified
version of the proportionate algorithm presented in [2] is proposed in [12] to estimate
the sparsity of a channel to be identified, by automatically adjusting the distribution
of the updating energy among several adaptive coefficients, and allowing a conver-
gence rate that is comparable to the traditional algorithms for dispersive channels.
Proportionate adaptation algorithms are employed in this work because they tend to
compensate lower convergence rates by considering the reuse of data that is also
adopted in view of its better steady-state performance.

This paper presents the derivation of the LMLS and LLAD algorithms from the
exact solution of a local deterministic optimization problem, which differs from the
originally employed stochastic gradient technique. This new paradigm allows the
achievement of general versions of these algorithms, by employing coefficient reuse
and proportionate adaptation approaches. Thus, we also derive the following algo-
rithms: improved mu-law least mean logarithmic square with reuse of coefficients
(IMPLMLS-RC) and improved mu-law least logarithmic difference with reuse of
coefficients (IMPLLAD-RC). These approaches intend to increase the performance
of LMLS and LLAD algorithms, incorporating both coefficient reuse techniques pre-
sented in [5] and the proportionate adaptation scheme suggested in [12].

This work is structured as follows: Sect. 2 describes the LMLS and LLAD
algorithms and provides a deterministic optimization framework which unifies the
derivation of suchmethods; the proposed proportionate adaptive algorithmswith coef-
ficient vector reusing are derived in Sect. 3; an energy-based relationship, which can be
used to perform a stochastic transient analysis of the proposed algorithms, is derived in
Sect. 4; simulation setup and results are discussed in Sect. 5; conclusions are presented
in Sect. 6.

2 LMLS and LLAD Algorithms

As presented in [25], both LMLS and LLADalgorithms are derived from the following
cost function

J [e(k)] � F[e(k)] − 1

α
ln(1 + αF[e(k)]), (2)

where α > 0 is a design parameter and F[e(k)] is the traditional cost function that
generally depends on e(k), just like E

[
e2(k)

]
, in which E[·] denotes the statistical
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mean operator. Starting from the gradient of J [e(k)] with respect to w(k) and by the
computation of the stochastic approximation that replaces F[e(k)] by f (e(k)) (i.e.,
F[e(k)] = E [ f (e(k))]), the coefficient updating equation of w(k) is given by [25]:

w(k + 1) = w(k) + βx(k)
∂ f (e(k))

∂e(k)

α f (e(k))

1 + α f (e(k))
, (3)

where β is the learning factor, which provides a trade-off among convergence rate,
steady-state performance and probability of instability. By choosing f (e(k)) = e2(k),
the LMLS algorithm

w(k + 1) = w(k) + β
αx(k)e3(k)

1 + αe2(k)
(4)

is obtained, and assuming f (e(k)) = |e(k)| the LLAD algorithm

w(k + 1) = w(k) + β
αx(k)e(k)

1 + α|e(k)| (5)

is derived. In [25], the updating equations were obtained by a stochastic argument,
replacing the expectation E

[
e2(k)

]
by e2(k), for example. It is known that the

diminishing return functions employed in (5)–(4) tend to improve the convergence
performance [26].

Next, we present a new derivation for the LMLS and LLAD algorithms through a
minimal perturbation approach, along with additional constraints. Besides being a tool
that enables the development of new algorithms, the proposed unified optimization
framework provides insight into their expected behavior.

The update Eqs. (4) and (5) can be derived by solving the deterministic optimization
problem

min
w(k+1)

‖w(k + 1) − w(k)‖2

s.t. ep(k) = (1 − g [e(k)]) e(k), (6)

where the a posteriori error ep(k) is defined by

ep(k) � d(k) − wT (k + 1)x(k). (7)

The function g [e(k)] is

gLMLS [e(k)] = β
α‖x(k)‖2e2(k)
1 + αe2(k)

(8)

and

gLLAD [e(k)] = β
α‖x(k)‖2
1 + α|e(k)| (9)
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for the LMLS and LLAD, respectively. It should be noted that the choices

gLMS(e(k)) = β‖x(k)‖2, (10)

gLMF(e(k)) = β‖x(k)‖2e2(k), (11)

and

gLAD(e(k)) = β‖x(k)‖2e2(k)
|e(k)| (12)

give place to the LMS, LMF and LAD algorithms, respectively [24]. Functions
gLMLS(e(k)) and gLLAD(e(k)) combine the higher- and lower-order measures of the
error, which allows the use of higher-order statistics of the errors when the pertur-
bations are small [26]. It can be observed that the LMLS behaves as the LMF when
the error is small, which enhances its convergence, and as the LMS when the error is
large, which avoids the stability issues of LMF [25]. Similarly, the LLAD maintains
the robustness of the LAD in scenarios having impulsive noise, since gLLAD(e(k))
approximates gLAD(e(k)) in high-magnitude error regime, thereby presenting better
convergence properties than those of the LAD, since gLLAD(e(k)) tends to gLMS(e(k))
when the error is small.

3 Proposed Algorithms

The main contribution of this paper is to derive generalized versions of LMLS and
LLADalgorithms, by employing coefficient reuse and proportionate adaptation,which
can be interpreted as solvers of a deterministic (instead of stochastic) optimization
problem. In mathematical terms, let

G[e(k)] � (1 − g [e(k)]) e(k) (13)

be the constraint for the a posteriori error ep(k), with e(k) defined by

e(k) � d(k) − 1 − ρ

1 − ρL

L−1∑

l=0

ρlwT (k − l)x(k), (14)

where L is the length of the reuse window of the past adaptive coefficients1 and
0 < ρ < 1 is a parameter that balances the steady-state performance and the conver-
gence rate.2 The proposed family of proportionate adaptive algorithms with reusing
coefficients vector can thus be obtained from the local optimization problem

1 Increasing L enhances the steady-state performance, which is important when the SNR is low [5], at the
cost of reducing the convergence rate.
2 Choosing a small ρ is equivalent to emphasizing the most recent adaptive coefficient vectors. In the case
of ρ → 1, the last L estimated vectors assume similar importance.
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min
1

2

L−1∑

l=0

ρl ‖w(k + 1) − w(k − l)‖2
Λ−1(k)

s.t. ep(k) = G[e(k)], (15)

in which ‖x‖2Λ � xT (k)Λx(k), ‖ · ‖2 stands for the Euclidean norm and Λ(k) is
a diagonal matrix, whose main diagonal elements adjust the learning rate of each
coefficient, bymeans of the proportionate adaptation principle [12], so that coefficients
with larger magnitude have a stronger update.

The usage of the Lagrangemultipliers technique allows the derivation of a function,
whose minimum value matches with the solution of the original optimization problem
(15), given by

F[w(k + 1)] = 1

2

L−1∑

l=0

ρl ‖w(k + 1) − w(k − l)‖2
Λ−1(k)

+ λ
[
ep(k) − (1 − g [e(k)]) e(k)

]
.

The minimization of F[w(k + 1)] with respect to w(k + 1) yields

∂F[w(k + 1)]
∂w(k + 1)

= Λ−1(k)w(k + 1)

(
1 − ρL

1 − ρ

)

−Λ−1(k)
L−1∑

l=0

ρlw(k − l) − λx(k) = 0.

We thus conclude that the form of the updating equation is described by

w(k + 1) = 1 − ρ

1 − ρL

L−1∑

l=0

ρlw(k − l)

+ 1 − ρ

1 − ρL
λΛ(k)x(k). (16)

Applying (16) to constraint (13) and employing (14) leads to

1 − ρ

1 − ρL
λ = g [e(k)] e(k)

‖x(k)‖2Λ(k)

. (17)

Combining (16) and (17), we obtain the final updating equation

w(k + 1) = 1 − ρ

1 − ρL

L−1∑

l=0

ρlw(k − l)

+ Λ(k)x(k)g [e(k)] e(k)

‖x(k)‖2Λ(k)

, (18)
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which is a very general update scheme that incorporates coefficients reuse and propor-
tionate adaptation. It is noteworthy that the optimization problem (15) is equivalent to
a convex quadratic programming with a one-dimensional affine subspace, and hence,
its solution presents a closed-form expression.

The computational burden involved in the evaluation of the term

φ(k) �

�θ(ρ)
︷ ︸︸ ︷
1 − ρ

1 − ρL

L−1∑

l=0

ρlw(k − l) (19)

can be alleviated by using the recursion

φ(k + 1) = θ(ρ)w(k + 1) + ρφ(k) − θ(ρ)ρLw(k − L + 1), (20)

which implies that the referred burden related to this term does not increase with L .
It is straightforward to verify that the simple choice (SC) configuration defined by

L = 1, ρ → 1 and Λ(k) = IN (i.e., the identity matrix), which leads to e(k) = e(k),
together with the use of the g[e(k)] functions selected in (8) and (9), generates the
LMLS and LLAD algorithms, which can be regarded as solvers of particular cases of
the optimization problem described by (15).

AlthoughΛ(k)may assume the identity matrix, it is possible to choose more appro-
priate main diagonal elements in order to increase the convergence rate. According
to [12], these elements are determined from the estimation of the channel sparsity ξ ,
defined by

ξ(k) = (1 − η)ξ(k − 1) + ηξw(k), 0 < η � 1, (21)

in which η is a fading factor and ξw(k) is defined by

ξw(k) � N

N − √
N

(
1 − ‖w(k)‖1√

N‖w(k)‖2

)
, (22)

where N is the number of channel coefficients. Finally, the estimated sparsity ξ(k) is
mapped to the parameter γ (k) � 2ξ(k) − 1 and the elements of the main diagonal of
Λ(k) are given by

λn(k) � 1 − γ (k)

2N
+ (1 + γ (k))G(|wn(k)|)

2‖G(|w(k)|)‖1 + ε
, (23)

where ε is a regularization constant and G(|wn(k)|) is defined by [12]

G(|wn(k)|) �
{
400|wn(k)|, |wn(k)| < 0.005

8.51|wn(k)| + 1.96, otherwise.
(24)
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4 Energy Conservation Relationship

Energy conservation arguments can be employed to predict the performance of adap-
tive algorithms [1,30]. Let

w̃(k + 1) � w� − w(k), (25)

be the deviation vector. The general update Eq. (18) can be rewritten as

w̃(k + 1) = θ(ρ)

L−1∑

l=0

ρlw̃(k − l) − Λ(k)x(k)g(·)e(k)
‖x(k)‖2Λ(k)

. (26)

Let us define the error-related quantities

eΣ
p (k) � xT (k)Σw̃(k + 1), (27)

eΣ
a,l(k) � xT (k)Σw̃(k − l), for l ∈ {0, 1, . . . , L − 1}, (28)

whereΣ ∈ R
N×N is an arbitrary symmetric matrix. Premultiplying both sides of (26)

by xT (k)Σ yields

eΣ
p (k) = θ(ρ)

L−1∑

l=0

ρl eΣ
a,l(k) − ‖x(k)‖2ΣΛ(k)

‖x(k)‖2Λ(k)

g(·)e(k). (29)

By isolating g(·)e(k) in (29) and substituting this term in (26), we obtain

w̃(k + 1) + θ(ρ)Λ(k)x(k)
L−1∑

l=0

ρl
eΣ
a,l(k)

‖x(k)‖2ΣΛ(k)

= θ(ρ)

L−1∑

l=0

ρlw̃(k − l) + Λ(k)x(k)eΣ
p (k)

‖x(k)‖2ΣΛ(k)
. (30)

By evaluating the energy of both sides of (30), as advanced in [11,27], the following
identity is established:

‖w̃(k + 1)‖2 + θ(ρ)eΛ(k)
p

L−1∑

l=0

ρl eΣ
a,l(k)

‖x(k)‖2ΣΛ(k)

+ θ2(ρ)‖x(k)‖2
Λ2(k)

L−1∑

l1=0

L−1∑

l2=0

ρl1ρl2eΣ(k)
a,l1

eΣ
a,l2

(k)

‖x(k)‖4ΣΛ(k)

= θ2(ρ)

L−1∑

l1=0

L−1∑

l2=0

ρl1ρl2w̃T (k − l1)w̃(k − l2)
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+ θ(ρ)eΣ
p (k)

L−1∑

l=0

ρl
eΣ(k)
a,l (k)

‖x(k)‖2ΣΛ(k)

+
[
eΣ
p (k)

]2 ‖x(k)‖2Λ(k)

‖x(k)‖4ΣΛ(k)

, (31)

which can be employed to perform an exact stochastic transient analysis of the pro-
posed algorithm, using the usual procedures of the energy-based approach [27]. It is
noteworthy that in the case of steady-state analysis, the choice Σ = Λk simplifies
(31).

5 Simulation Results

In the following, the mean-square deviation, defined by

MSD (dB) � 10 log10 ‖w� − w(k)‖2, (32)

is adopted as the metric to evaluate the performance of the proposed algorithms.

5.1 System Identification

In order to measure the performance of the proposed algorithms, we run simulations
with two groups of algorithms. For both groups, we consider the following setup: x(k)
as the white Gaussian input signal with zero mean and variance equal to one;w� as the
64-length channel (model 1 of [9]); white Gaussian measuring noise with zero mean
and variance σ 2

ν = 0.01.
The first group of algorithms is composed of LMS, LMLS and IMPLMLS-RC.

We assumed the values ε = 10−6 for the regularization factor and η = 0.1 for the
fading factor, for all the algorithms proposed in this paper. Figures 3 and 4 show
the MSD obtained by 100 Monte Carlo independent runs for these three algorithms.
The parameters used in the simulations of Figs. 3 and 4 are listed in Tables 1 and 2,
respectively. Those values were chosen so that all algorithms had similar steady-state
MSD, thereby allowing a fair comparison. Moreover, simulation results with L = 5
and L = 10 are also presented in Fig. 3 in order to show the reuse window length
effects on the performance of the proposed algorithm. It can be verified that larger
values of L tend to improve steady-state MSD while keeping the convergence rate
competitive with respect to the LMLS algorithm. Simulation results for ρ = 0.7 and
ρ = 0.1, with L = 2, are also shown in Fig. 4. It can be observed that as ρ decreases,
the convergence rate improves, while matching steady-state MSD of the LMLS and
LMS algorithms. Table 3 presents the iteration number for which the MSD of each
algorithm has converged.

The second group of algorithms consists of LAD, LLAD and IMPLLAD-RC. A
Gaussian impulsive noisewith zeromean, variance σ 2 = 108 and probability of occur-
rence of 0.01 was added to the desired signal (d(k)) with the simulation conditions
employed for the first group. Figures 5 and 6 show comparisons among the algorithms
from the second group. The parameter values shown used in these simulations are
presented in Tables 4 and 5. These values were chosen in order to guarantee a similar
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Fig. 3 Comparisons among the LMS, LMLS and IMPLMLS-RC algorithms for ρ = 0.45, L = 2, L = 5
and L = 10

Fig. 4 Comparisons among the LMS, LMLS and IMPLMLS-RC algorithms for L = 2, ρ = 0.1, ρ = 0.45
and ρ = 0.7
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Table 1 Parameters used in the
simulations of Fig. 3

Algorithm β α ρ L

LMS 1.2 × 10−3 – – –

LMLS 2.5 × 10−2 1 – –

IMPLMLS-RC 0.45 4.5 0.45 2; 5; 10

Table 2 Parameters used in the
simulations of Fig. 4

Algorithm β α ρ L

LMS 1.2 × 10−3 – – –

LMLS 2.5 × 10−2 1 – –

IMPLMLS-RC 0.45 4.5 0.1; 0.45; 0.7 2

Table 3 Convergence iteration
numbers for the simulations
shown in Figs. 3 and 4

Algorithm Iteration

LMS 4263

LMLS 4347

IMPLMLS-RC (L = 2; ρ = 0.45) 4812

IMPLMLS-RC (L = 5; ρ = .45) 5647

IMPLMLS-RC (L = 10; ρ = 0.45) 5936

IMPLMLS-RC (L = 2; ρ = 0.1) 3683

IMPLMLS-RC (L = 2; ρ = 0.7) 5550

Fig. 5 Comparisons among the LAD, LLAD and IMPLLAD-RC algorithms for ρ = 0.45, L = 2, L = 5
and L = 10
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Fig. 6 Comparisons among the LAD, LLAD and IMPLLAD-RC algorithms for L = 2, ρ = 0.1, ρ = 0.45
and ρ = 0.7

Table 4 Parameters used in the
simulations of Fig. 5

Algorithm β α ρ L

LAD 8 × 10−4 – – –

LLAD 5 × 10−3 2 – –

IMPLLAD-RC 0.32 3 0.45 2; 5; 10

Table 5 Parameters used in the
simulations of Fig. 6

Algorithm β α ρ L

LAD 8 × 10−4 – – –

LLAD 5 × 10−3 2 – –

IMPLLAD-RC 0.32 3 0.1; 0.45; 0.7 2

steady-state performance for all algorithms. Simulation resultswith L = 5 and L = 10
are presented in Fig. 5. It can be seen that larger values of L improve the steady-state
MSD without significantly affecting the convergence rate. Results for ρ = 0.1 and
ρ = 0.7 are shown in Fig. 6. It can be noted that as ρ increases, a slight improvement
on steady-state MSD occurs, while for smaller values of ρ there is a negligible gain
in convergence speed and poor steady-state performance. The iteration number for
which the MSE of each algorithm of Figs. 5 and 6 has converged is shown in Table 6.
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Table 6 Convergence iteration
numbers for the simulations
shown in Figs. 5 and 6

Algorithm Iteration

LAD 973

LLAD 696

IMPLLAD-RC (L = 2; ρ = 0.45) 593

IMPLLAD-RC (L = 5; ρ = 0.45) 681

IMPLLAD-RC (L = 10; ρ = 0.45) 714

IMPLLAD-RC (L = 2; ρ = 0.1 500

IMPLLAD-RC (L = 2; ρ = 0.7) 561

Fig. 7 Steady-state MSD (in dB) for the ANC experiment

5.2 Active Noise Control

Since the advanced algorithm can also be used in ANC applications, some results in
this context are presented in this section. The simulated ANC scenario (see Fig. 2)
employs the following ideal transfer function:

w�
n =

{
1, for n = 0
0, otherwise

,

and N = 20. The secondary transfer function is given by

B(z) = 1 − 0.8z−1 + 0.6z−2 − 0.4z−3 + 0.2z−4,

and the variance of the white Gaussian additive noise is σ 2
ν = 0.1.
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Table 7 Parameters used in the
simulations of Figs. 7 and 8

Algorithm α ρ L

FX-LMS – – –

FX-LMLS 1 – –

FX-IMPLMLS-RC 1 0.9 5

Fig. 8 MSD (in dB) evolution for the ANC experiment for the FX-LMS (with β = 0.000798), FX-LMLS
(with β = 0.0028) and FX-IMPLMLS-RC (with β = 0.006)

Figure 7 presents the steady-state MSD for different β values and other parameters
listed in Table 7. This figure shows a clear advantage of the proposed algorithm in the
steady-state regime, mainly due to the coefficient reuse strategy.

Figure 8 shows the MSD evolutions of the algorithms when the adaptation step
sizes are adjusted to obtain similar steady-state MSD values. The other parameters
used in this experiment are displayed in Table 7. This figure allows us to conclude that
the proposed FX-IMPLMLS-RC algorithm has the fastest convergence rate, since it
employs the proportionate adaptation principle.

6 Conclusions

In this work, novel algorithms were derived with the purpose of improving the per-
formance of the original LMLS and LLAD approaches, in both system identification
and ANC tasks. The stochastic gradient problem was transformed in a constrained
optimization, thereby allowing the introduction of new techniques to the original
algorithms. Simulation results show that the proposed algorithms can overcome the
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traditional ones with respect to both steady-state performance and robustness against
impulsive noise. It was observed that IMPLLAD-RC is capable of producing a conver-
gence rate as good as that of the LAD algorithm, with a lower MSD at steady state. In
a future work, we intend to derive a steady-state analysis of the advanced algorithms
in both system identification and ANC setups.
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